Today our topic of discussion is Trigonometric Ratio Exercises 9.2 .
Trigonometric Ratio Exercises 9.2
Exercises 9.2
- If cosθ= 1/2 which one is the value of cotθ ?
1) 1/(√3)
2) 1
3) √3
4) 2
- If cos²θ- sin² θ= 1/3 what is the value of cos4θ- sin4 θ?
1) 3
2) 2
3) 1
4) 1/3
- If cot(θ- 30 °) = 1/(√3) ,sin θ=what ?
1) 1/2
2) 0
3) 1
4) √3/2
- If tan(3A) = √3 A=what?
1) 45 °
2) 30 °
3) 20
4) 15 °
- For 0°≤ θ≤ 90 deg what is the maximum value of sin θ=?
1) -1
2) 0
3) 1/2
4) 1
- ABC is a right-angled triangle whose
hypotenuse AC = 2, AB = 1
(i) ∠ACB = 30 °
(ii) tan A = √3
(iii) sin(A+C)=0
Which one of the following is correct?
1) i
2) ii
3) i and ii
4) ii and iii
- ABC is a right-angled triangle whose hypotenuse AC = 2 ,AB = 1
(i) cos A = sin C
(ii) cos A + sec(A) = 5/2
(iii) tan C = 2/√3
Which one of the following is correct?
1) i and ii
2) ii and iii
3) i and iii
4) i, ii and iii
- (1 – cot²(60 °))/(1 + cot² (60 °))
- tan 45 °* sin² (60 °) * tan 30 °* tan 60 °
- (1 – cos²(60 °))/(1 + cos² (60 °)) + sec²(60 °)
- cos 45 °* cot² (60 °) * co * sec² (30 °)
Show that, (12-17)
- cos² (30 °) – sin² (30 °) = cos 60 °
- sin 60 °* cos 30 °+ cos 60 °* sin 30 ° = sin 90 °
- cos 60 °* cos 30 °+ sin 60 ° * sin 30 °= cos 30 °
- sin 3A = cos 3A when A = 15 °
- sin 2A = (2tan A)/(1 + tan² A) when A = 45 °
- tan 2A = (2tan A)/(1 – tan² A) when A = 30 °
- 2cos(A + B) = 1 = 2sin(A – B) and A, B are acute angles, show that A = 45 °,B = 15 °
- If cos(A – B) = 1 , 2sin(A + B)=√3 and A, B are acute angles, determine the values of A and B.
- Solve: (cos A – sin A)/(cos A + sin A) = (√3 – 1)/(√3 + 1)
- If A and B are acute angles and cot (A + B) = 1 , cot(A – B) = √(3) determine the values of A and B.
- Show that, cos 3A = 4cos³ A – 3cos A when A = 30 °
- Solve: sin θ+ cosθ = 1 when 0° ≤ θ≤ 90 °
- Solve: cos² θ- sin² θ= 2 – 5cos θ when is an acute angle.
- Solve: 2sin² θ+ 3cos θ- 3 = 0 0 is an acute angle.
- Solve: tan² θ- (1 + √3* tan θ+ √3 ) = 0
- Solve: 3cot² (60°) + 1/4 * cosec² (30°) + 5sin² (45°) – 4cos² (60°)
- If angle B = 90° . AB = 5cm BC = 12cm of ΔABC
1) Find the length of AC.
2) If angle C = theta . find the value of sin θ+ cos θ3) Using stem show that, sec² A + cosec² A = sec² A * cosec² A
29.
In accordance of the given figure
1) what is the measurement of AC?
2) Find the value of tan A + tan C
3) Find the values of x and y.
- sin θ= v cos θ= q tan θ= r where is an acute angle.
1) If r = √(3) ^ – 1) find the value of 0.
2) If p + q = √2 prove that θ= 45° 0 3) If 7p²+ 3q ² = 4 show that, tan θ= 1/(√(3))
- ABC is a right-angled triangle whose angle B = right-angle and AB = BC Prove that, (BC * cos C – AC * cos B)/(BC * cos B – AC * cos A) + cos C = 0
- ABC is a right-angled triangle whose ZB- one right-angle. and cot A + cot B = 2cot C Prove that, A * C² + B * C² = 2A * B²
See more: