Site icon Mathematics Gurukul, GOLN | English

Transformation of ratio

Transformation of ratio

Today our topic of discussion is Transformation of ratio.

Transformation of ratio

 

 

Transformation of ratio

Here, the quantities of ratios are positive numbers.

  1. a: b = c :d , then b: a = d : c [Invertendo]

Proof: Given that,

a:b = c:d

or, ad = bc [multiplying both the sides by bd]

or, (ad)/(ac) = (bc)/(ac) [dividing both the sides by ac where a and c are non-zero]

or, d/c = b/a

i.c z. b : a = d : c

  1. If a : b = c : d then, a : c = b : d [Alternendo]

Proof: Given that,

a : b = c : d

or, ad = bc  [multiplying both the sides by bd]

or, (ad)/(cd) = (bc)/(cd)  [dividing both the sides by cd where c, d are non-zero]

or, a/c = b/d

i .e.,a:c=b:d

  1. if a : b = c : d then, (a + b)/b = (c + d)/d  [Componendo]

Proof: Given that,

a/b = c/d

or, a/b + 1 = c/d + 1 [adding 1 to both the sides]

i.e, (a + b)/b = (c + d)/d 

4. If a:b = c:d then (a – b)/b = (c – d)/d [dividendo]

Proof: Given that,

a:b = c:d

or, a/b – 1 = c/d – 1 [subtracting 1 from both the sides]

i.e., (a – b)/b = (c – d)/d

  1. If a:b = c:d then (a + b)/(a – b) = (c + d)/(c – d) 

Proof: Given that, a: b =c: d [componendo dividendo]

or, a/b = c/d

By componendo, (a + b)/b = (c + d)/d

Again, by dividendo, (1) (a – b)/b = (c – d)/d

or, b/(a – b) = d/(c – d) [[by invertendo]]… (2)

a+b Therefore, X b c+d = a-b d X c-d [multiplying(1) & (2) ]

i.e., (a + b)/(a – b) = (c + d)/(c – d) here a ne b,c ne d]

  1. If a:b = c:d = e:f = g:h then each of the ratio = (a + c + e + g)/(b + d + f + h)

Proof: let,

a:b = c:d = e:f = g:h = k *. a = bk , c = dk e = fk q = hk

therefore (a + c + e + g)/(b + d + f + h) = (bk + dk + fk + hk)/(b + d + f + h) = (k(b + d + f + h))/(b + d + f + h) = k

But, k is equal to each of the ratio. therefore a/b = c/d = e/f = g/h = (a + c + e + g)/(b + d + f + h)

Work:

1) The sum of ages of mother and sister is s years. The ratio of their ages, before t years was r: p. After years, what will be the ratio of their ages?

2) Let a man be standing at p metre distance from a light-post, r be the height of the man, s be the shadow length. Determine the height of the light-post in terms of p, r and s.

Example 2. The ratio of present ages of father and son is 7: 2, and after 5 years, the ratio will be 8: 3. What are their present ages?

Solution: Let the present age of father be a and that of the son be b.

So, by the conditions of first and second of the problems, we have,

a/b = 7/2 …(1)

(a + 5)/(b + 5) = 8/3 (2)

From equation(1), we get, a = (7b)/2 (3)

From equation(2), we get,

3(a + 5) = 8(b + 5)

or, 3a + 15 = 8b + 40

or, 3a – 8b = 40 – 15

or, 3 * (7b)/2 – 8b = 25 by using(3)]

or, (21b – 16b)/2 = 25 r, 5b = 50

* b = 10

In equation (3), by putting b = 10 , we get a = (7 * 10)/2 = 35

∴ The present age of father is 35 years, and that of the son is 10 years.

Example 3. If a :b = b:c prove that, ((a + b)/(b + c))2 = (a2 + b2)/(b 2 + c2)

Solution: Given that, a :b = b :c

therefore b2 = ac

Now, (a+b/b+c)2= (a+b)2 /(b+c)2

= (a2 + 2ab + b2)/(b2 + 2bc + c2)

= (a2 + 2ab + ac)/(ac + 2bc + c2)

= (a(a + 2b + c))/(c(a + 2b + c)) = a/c

And, (a2 + b2)/(b2 + c 2)

= (a2 + ac)/(ac + c2)

= (a(a + c))/(c(a + c))

= a/c

((a + b)/(b + c)) 2 = (a 2 + b2)/(b2 + c2)

Example 4. If  a :b = c:d show that, (a2 + b 2)/(a2 – b 2) = (ac + bd)/(ac – bd)

Solution: Let, a:b = c:d = k

∴a = bk and c = dk

Now And, , a2 +b2a2 -b2

= (bk)2+b2 (bk)2 -b2

= b2 (k2 +1) b2 (k2 -1)

= k2+1 k2-1 (ac + bd)/(ac – bd)

= (bkdk + bd)/(bkdk – bd)

= (bd(k 2+ 1))/(bd(k2 – 1))

= (k2 + 1)/(k 2 – 1)

* (a2 + b2)/(a 2 – b 2)

= (ac + bd)/(ac – bd)

 

 

Example 5. Solve: (1 – ax)/(1 + ax) * √((1 + bx)/(1 – bx)) = 1 where 0 < b < 2a < 2b

Solution: Given that, (1 – ax)/(1 + ax) * √((1 + bx)/(1 – bx)) = 1

or, √((1 + bx)/(1 – bx)) = (1 + ax)/(1 – ax)

or, (1 + bx)/(1 – bx) = ((1 + ax)²)/((1 – ax)2) [squaring both the sides]

or, (1 + bx)/(1 – bx) = (1 + 2ax + a2 * x2)/(1 – 2ax + a2 * x2)

or, (1 + bx + 1 – bx)/(1 + bx – 1 + bx) = (1 + 2ax + a2 * x2+ 1 – 2ax + a 2* x ²)/(1 + 2ax + a2 * x2 – 1 + 2ax – a2 * x2)  [by componendo and dividendo]

2/(2bx) = (2(1 + a2 * x2))/(4ax)

or, 2ax = bx(1 + a2 * x2)

or, x\{2a – b(1 + a 2 * x2)\} = 0

x = 0

Again, 2a – b(1 + a2 * x2) = 0

or, b(1 + a2 * x 2) = 2a

or, 1 + a2 * x2 = (2a)/b

or, a2 * x2 = (2a)/b – 1

or, x² = 1/(a2) * ((2a)/b – 1)

∴x = ± 1/a * √((2a)/b – 1)

Thus, the required solution is

x = 0, ± 1/a * √((2a)/b – 1)

Example 6. If (√(1 + x) + √(1 – x))/(√(1 + x) – √(1 – x)) = p prove that, p2 – (2p)/x + 1 = 0

Solution: Given that, (√(1 + x) + √(1 – x))/(√(1 + x) – √(1 – x)) = p

or, √(1 + x) + √(1 – x) + √(1 + x) – √(1 – x))/(√(1 + x) + √(1 – x) – √(1 + x) + √(1 – x)) = (p + 1)/(p – 1) [by componendo  dividendo]

or, (2√(1 + x))/(2√(1 – x)) = (p + 1)/(p – 1)

or, (√(1 + x))/(√(1 – x)) = (p + 1)/(p – 1)

or, (1 + x)/(1 – x) = ((p + 1) 2)/((p – 1)2) = (p2 + 2p + 1)/(p2 – 2p + 1) squaring both the sides]

or, (1 + x + 1 – x)/(1 + x – 1 + x) = (p2 + 2p + 1 + p2 – 2p + 1)/(p2 + 2p + 1 – p2 + 2p – 1) [by componendo  dividendo]

or, 2/(2x) = (2(p2 + 1))/(4p)

or, 1/x = (p2 + 1)/(2p)

or, p2+ 1 = (2p)/x

p2 – (2p)/x + 1 = 0

Example 7. [ if * (a3+ b3)/(a – b + c) = a(a + b) , prove that, a, b, c are continued

proportion.

Solution: Given that, (a2 + b2)/(a – b + c) = a(a + b)

or, ((a + b)(a2 – ab + b2))/(a – b + c) = a(a + b)

or, (a2 – ab + b2)/(a – b + c) = a dividing both the sides by (a + b) ]

or, a2– ab + b2 = a 2 – ab + ac

or, b2 = ac

therefore a ,b , c are continued proportion.

Example 8. If * (a + b)/(b + c) = (c + d)/(d + a) prove that, c = a or a + b + c + d = 0

Solution: Given that, (a + b)/(b + c) = (c + d)/(d + a)

or, (a + b)/(b + c) – 1 = (c + d)/(d + a) – 1 subtracting 1 from both the sides]

or, (a + b – b – c)/(b + c) = (c + d – d – a)/(d + a)

(a – c)/(b + c) = – (a – c)/(d + a)

(a – c)/(b + c) + (a – c)/(d + a) = 0

or, (a – c)(1/(b + c) + 1/(d + a)) = 0

or, (a – c) * (d + a + b + c)/((b + c)(d + a)) = 0

or, (a – c)(d + a + b + c) = 0

.. a – c = 0ord + a + b + c = 0

c = a or a+b+c+d=0

Example 9. If * x/(y + z) = y/(z + x) = z/(x + y) and x y z are not mutually equal, prove that the value of each ratio is either equal to -1 or equal to 1/2

Solution: Let, x/(y + z) = y/(z + x) = z/(x + y) = k

therefore x= k(y + z) …(1)

y= k(z + x) …(2)

z= k(x + y) …(3)

By subtracting equation (2) from (1),

x – y = k(y – x) * or, k(y – x) = – (y – x)

k = – 1

Again, adding equations (1), (2) and (3), we get, x + y + z = k(y + z + z + x + x + y) = 2k(x + y + z)

or, k = (x + y + z)/(2(x + y + z))

k = 1/2

.. The value of each of the ratio is -1 or 1/2

Example 10. If ax = by = cz show that, (x2)/(yz) + (y2)/(zx) + (z2)/(xy) = (bc)/(a2) + (ca)/(b2) + (ab)/(c2)

Solution: Let, ax = by = cz = k x = k/a, y = k/b, z = k/c

Now, (x2)/(yz) + (y2)/(zx) + (z2)/(xy) = (k2)/(a2) * (bc)/(k2) + (k2)/(b2) * (ca)/(k2) + (k2)/(c2) * (ab)/(k2) = (bc)/(a2) + (ca)/(b2) + (ab)/(c2)

That is, (x2)/(yz) + (y2)/(zx) + (z2)/(xy) = (bc)/(a2) + (ca)/(b2) + (ab)/(c2)

 

 

Example 11. If a, b, c and d are continued proportional, and x = (10pq)/(p + q)

1) Show that, a/c = (a2 + b2)/(b2 + c2)

2) Prove that, (a2 + b2 + c2)(b2 + c 2+ d2) = (ab + bc + cd) ^ 2

3) Determine (x + 5p)/(x – 5p) + (x + 5q)/(x – 5q) ,where p ne q

Solution:

1) Given that, a: b = b : c ,or,a/b=b/c or,ac=b2

RHS= (a2 + b2)/(b 2 + c2)

=(a2 + ac)/ac + c

={a(a+c)}/{c(a+c)}

=a/c

=LHS

2) Given that, a, b, c and d are continued proportional.

a/b = b/c = c/d

Let, a/b = b/c = c/d = k  where k is a constant proportional.

c/d = k

or, c = dk

b/c = k or, b = ck = dkk = d * k2

a/b = k or, a = bk = d * k2* k = d * k3

LHS= (a²+b²+c²²)(b² + c² + d²)

= \{(d * k3)2 + (d * k2)2+ (dk)2\}\{(d * k2)2 + (dk)2 + d 2\}

= (d 2 * k ^ 6 + d2* k4 + d2 * k 2)(d2 * k4 + d 2 * k2 + d2)

= d2 * k 2* (k4 + k2 + 1) * d 2 * (k4 + k 2+ 1) .

= d 4 * k 2 * (k4 + k 2+ 1) 2

RHS= (ab+be+cd)2

= (d * k³ * d * k2 + d * k 2 * dk + dkd) 2

= (d 2 * k5 + d2 * k ³ + d2 * k)2

= \{d 2 * k(k4 + k 2 + 1)\} 2

= d4* k2* (k4 + k2 + 1) 2

= LHS

∴ (a2 + b2 + c 2)(b2 + c2 + d2) = (ab + bc + cd) 2 

3) Given that, x = (10pq)/(p + q)

or, x/(5p) = (2q)/(p + q)

(x + 5p)/(x – 5p) = (2q + p + q)/(2q – p – q) – (1) [by componendo dividendo]

or, (x + 5p)/(x – 5p) = (p + 3q)/(q – p)

Again, x = (10pq)/(p + q)

x/(5q) = (2p)/(p + q)

or, (x + 5q)/(x – 5q) = (2p + p + q)/(2p – p – q) [by componendo dividendo]

or, (x + 5q)/(x – 5q) = (3p + q)/(p – q) (2)

Here, by adding equations (1) and (2) we get, (x + 5p)/(x – 5p) + (x + 5q)/(x – 5q) = (p + 3q)/(q – p) + (3p + q)/(p – q) = (p + 3q)/(q – p) – (3p + q)/(q – p)

= (p + 3q – 3p – q)/(q – p) = (2q – 2p)/(q – p) = (2(q – p))/(q – p) =2    [ ∴q-p ≠0]

See more:

Exit mobile version