Trigonometric ratios of an acute angle

Today our topic of discussion is Trigonometric ratios of an acute angle.

Trigonometric ratios of an acute angle

 

Trigonometric ratios of an acute angle

 

Trigonometric ratios of an acute angle

Let ∠XOA be an acute angle. We take any point P on OA. We draw a perpendicular PM from the point P to OA. A right angled triangle POM is formed. The six ratios are obtained from the sides PM, OM and OP of ΔPOM which are called trigonometric ratios of the angle ∠XOA and each of them are named particularly.

 

Trigonometric ratios of an acute angle

 

With respect to the ∠XOA of right-angled ΔPOM, PM is the opposite side, OM is the adjacent side and OP is the hypotenuse. Denoting ∠XOA =θ , the obtained six ratios are described below for the angle θ.

From the figure:

 

Trigonometric ratios of an acute angle

 

We observe, the symbol sin means the ratio of sine of the angle , not the multiplication of sin and θ. sin is meaningless without θ. It is applicable for the other trigonometric ratios as well.

Relation among the trigonometric ratios

 

Trigonometric ratios of an acute angle

 

FLet ∠XOA =θ is an acute angle.

rom the adjacent figure, according to the definition

sinθ=PM/OP,cosecθ=1/sinθ=OP/PM

cosθ=OM/OP,secθ=1/cosθ=OP/OM

tanθ=PM/OM,cotθ=1/tanθ=OM/PM

Again, tanθ PM/OM =(pm/op)/(om/op)  [dividing the numerator and the denominator by OP ]

Or, tanθ = (sinθ)/(cosθ)

tanθ = (sinθ)/(cosθ)

and similarly,

cotθ = (cosθ)/(sinθ)

Trigonometric identity

(1) (sinθ)² + (cosθ)² = (PM/OP)²+ (OM/OP)²

PM² /OP² + OM² /OP²

= ( PM² + OM² )/OP²

=Op² /OP²    [by the formula of Pythagoras]

=1

Or, (sin θ)² + (cos θ)² = 1  [ (sin θ)² + (cos θ)²= 1]

Remarks: For integer indices n we can write sin” for (sin θ)” and cos^n θ for * (cos θ) ^ n

(ii) sec²θ= (secθ)² = ((OP)/(OM)²

=Op²/OM²=(OM² + PM²)/ OM² [OP is the hypotenuse of right-angled ΔPOM]

=OM²/PM²+ OM²/OM²

=1+ (PM/OM)²=1+ (tan θ)²=1+tan²θ

[ sec²θ-tan²θ=1 ] and [tan²θ = sec²θ- 1]

(iii) cosec² = (cosec²0)² = (OP/PM)

=Op²/PM²=(PM²+OM²)/PM² [OP is the hypotenuse of right-angled ΔPOM [

=PM²/PM² + OM²/PM²

= 1 + (cot θ)² = 1 + cot² θ

Example 3. If tan A = 4/3 find the other trigonometric ratios of the angle A.

Solution:

 

Trigonometric ratios of an acute angle

 

Given that, tan A = 4/3

So, opposite side of the angle A = 4 adjacent side= 3

hypotenuse = √(4² + 3²) = √25 = 5

Therefore, sin A = 4/5 cos A = 3/5 cot

A = 3/4

cosec A = 5/4 sec A = 5/3

Example 4. ∠B is the right-angle of a right angled ΔABC. If tan A = 1 then verify the truth of 2sin A.cos A = 1

Solution:

 

Trigonometric ratios of an acute angle

 

Given that, tan A = 1

So, opposite side of the angle adjacent side-a hypotenuse = √(a²+ a²) = √2 * a

Therefore, sin A = a/√2 * a

= 1/√(2 cos A

= a/√2 * a)

= 1/√2

Now, left hand side 2sin A.cos=A = 2 * 1/√2 * 1/√2

=1/2

= 1 = right hand side.

∴ 2sin A. cos A = 1 is true.

Example 5. Prove that, tanθ+ cotθ= secθ* cosecθ

Solution:

Left hand side = tan θ+ cot θ

= (sin θ)/(cos θ) + (cos θ)/(sin θ)

= (sin² θ+ cos² θ)/(sin θ* cos θ)

= 1/sin θ* cos θ [ sin² θ+ cos² θ= 1 ]

=1/sinθ*1/cosθ

=secθ*cosecθ

=Right hand sight

Example 6. Prove that, sec² θ+ cosec² θ= sec² θ* cosec² θ

L.H.S.= sec² θ+ co * sec² θ = 1/(1 + sin²θ) + (sin² θ)/(1 + sin² θ)

= 1/(sin θ) * 1/(cos θ) = co * sec(θ) * sec(θ)

= sec² θ* cosec² θ

= Right hand side (Proved)

Example 7. Prove that, 1/(1 + sin² θ) + 1/(1 + co * sec² θ) = 1

Solution:

L.H.S.= 1/(1 + sin²θ) + 1/(1 + co * sec² θ)

= 1/(1 + sin² θ) + 1/(1 + 1/(sin² θ)

= (1 + sin² θ)/(1 + sin² θ)

=1

=R.H. S(Proved)

Example 8. Prove that: 1/(2 – sin²θ) + 1/(2 + tan² θ) = 1

Solution:

L.H.S.= 1/(2 – sin²θ) + 1/(2 + tan² θ) = 1/(2 – sin²θ) + 1/(2 + (sin²θ)/(cos² θ))

= 1/(2 – sin²θ) + (cos²θ)/(2cos² theta +sin²θ)

= 1/(2 – sin²θ) + (cos² θ)/(2(1 – sin²θ) + sin²θ)

= 1/(2 – sin²θ) + (cos² θ)/(2 – 2sin²θ + sin²θ)

= 1/(2 – sin²θ) + (1 – sin²θ)/(2 – sin²θ)

= (2 – sin²θ)/(2 – sin²θ)

= 1 =R.H.S (Proved)

Example 9. Prove that: (tan A)/(sec(A) + 1) – (sec(A) – 1)/(tan A) = 0

Solution:

L.H.S.= (tan A)/(sec(A) + 1) – (sec(A) – 1)/(tan A) 

= (tan² A – (sec² A – 1))/((sec(A) + 1) * tan A)

= (tan² A – tan² A)/((sec(A) + 1) * tan A)  [:sec² A-1=tan² A]

= 0/((sec(A) + 1) * tan A)

=0=R.H. S(Proved)

Example 10. Prove that: √((1 – sin A)/(1 + sin A)) = secA – tan A

Solution:

L.H.S.= √((1 – sin A)/(1 + sin A))

= √((1 – sin A)(1 – sin A))/((1 + sin A)(1 – sin A))) [Multiplying the numerator and denominator by

√(1 – sin A)]

= √((1 – sin A)²)/(1 – sin² A))

= √(1 – sin A)²)/(cos² A)

= (1 – sin A)/(cos A)

= 1/(cos A) – (sin A)/(cos A)

= sec(A) – tan A

=R.H. S(Proved)

Example 11. If tan A + sin A = a and tan A – sin A = b prove that ,a² -b² = 4√(ab)

Solution: Here given that, tan A +sin A= a and tan A – sin A = b

L.H.S.= a ²- b ²

= (tan A + sin A)² – (tan A – sin A)²

=4tan A.sin A[** (a + b)² – (a – b)² = 4ab ]

= 4 √(tan² A * sin² A)

= 4√(tan² A * (1 – cos² A))

=4 √tan² A – tan² A .cos² A

= 4√(tan² A – sin² A) [** tan A= sin A cos A ]

= 4√((tan A + sin A)(tan A – sin A))

= 4√(ab)

=R.H. S(Proved)

Example 12. If sec A + tan A = 5/2 find the value of sec A – tan A

Solution: Here given that, sec A + tan A = 5 2 …( ) We know that, sec² A = 1 + tan² A

Or, sec² A – tan² A = 1

Or, (sec(A) + tan A)(sec(A) – tan A)

= 1 Or, 5/2 * (sec(A) – tan A)

= 1 [From (1)]

therefore sec A – tan A = 2/5

See more:

Leave a Comment